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Definition: Let H be a subgroup of a group (G,o). If 𝑎 ∈ 𝐺 then the 

subset aoH of G defined by 

 aoH = { aoh : ℎ ∈ 𝐻 } 

is called a left coset of H in G determined by element 𝑎 ∈ 𝐺. 

Similarly, the subset Hoa of G defined by 

 Hoa = { hoa : ℎ ∈ 𝐻 } 

is called a right coset of H in G determined by element 𝑎 ∈ 𝐺. 

 

Note that (i) Cosets are not subgroups in general! 

                (ii) If e is the identity of (G,.) and H is subgroup of G then    

                      H itself is a left as well as right coset. 
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 (iii) If (G, +) is a group under addition and H is a subgroup of G. 

 For  𝑎 ∈ 𝐺  

 a + H = { a + h : ℎ ∈ 𝐻 } 

H + a = { h + a : ℎ ∈ 𝐻 } 

are left coset and right coset respectively. 

(iv) If (G,o) is an Abelian group then left coset of G is same as right 

coset of G, i.e., aoH = Hoa 
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Examples:  

1.  Suppose G= {1, -1, i, -i}is a group under operation 

multiplication, where i2 = -1.  

H = { 1, -1 } is a subgroup of G.  

The right coset of H in G are  H.1, H.(-1), H(i), H(-i), where  

       H.1 = { 1.1, (-1).1 } =  H 

      H.(-1) = { 1.(-1), (-1)(-1) } = { -1, 1 }= H 

      H. i = { 1.i, (-1).i  } = { i, -i } 

      H.(-i) = {1.(-i), (-1)(-i)} = {-i, i } 
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2. Suppose G = Z, the set of integers is a group under addition. 

    H = 2Z, the set of  even integers is a subgroup of Z  

    H  = { 0, ±2, ±4, ±6, ±8, … .. ..} 

H + 0 = { h + 0 : ℎ ∈ 𝐻  } = {h: ℎ ∈ 𝐻 } = H 

  H + 1 =  { h + 1: ℎ ∈ 𝐻 }= { ±1, ±3, ±5, ….} 

H + 2 = { h + 2 : ℎ ∈ 𝐻 }= { 0, ±2, ±4, ±6, ±8, … …} 

H + 3 = { h + 3: ℎ ∈ 𝐻 } = { ±1, ±3, ±5, …..} 

 

Hence, the only distinct right cosets of H in G are H and H + 1. 
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Properties of Cosets: 

1.Theorem: If G is an abelian group and 𝑎 ∈ 𝐺 then aH = Ha. 

Proof: Let  𝑥 ∈ 𝐻𝑎. Then x = ha     for some ℎ ∈ 𝐻. 

As ℎ ∈ 𝐻 ⇒ ℎ ∈ 𝐺. Again, 𝑎 ∈ 𝐺 and G is abelian, ha = ah  

  ⇒ x = ah for some ℎ ∈ 𝐻. 

    ⇒ 𝑥 ∈ 𝑎 𝐻. 

Thus,   Ha ⊆ 𝑎𝐻 

Similarly, if 𝑥 ∈ 𝑎𝐻. Then x = ah     for some ℎ ∈ 𝐻. 

As ℎ ∈ 𝐻 ⇒ ℎ ∈ 𝐺. Again, 𝑎 ∈ 𝐺 and G is abelian,  

we have,   ah = ha ⇒ x = ha   for some ℎ ∈ 𝐻. 
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 ⇒ 𝑥 ∈  𝐻𝑎.  Thus, aH ⊆ 𝐻𝑎. Hence, a H = Ha. 

2.Theorem: If H is a subgroup of G and  a, b  ∈ 𝐺, then  

(i) Ha = H if and only if a  ∈ 𝐻 

(ii) aH = H if and only if a ∈ 𝐻 

(iii) Ha = Hb if only if  𝑎𝑏−1  ∈ 𝐻 

(iv) aH = bH if and only if 𝑎−1𝑏 ∈ 𝐻. 

Proof: (i)  Firstly,  suppose Ha = H.  

As H is subgroup of G, so  𝑒 ∈ 𝐻 

Thus,  𝑒𝑎 ∈ 𝐻𝑎 ⇒ 𝑎 ∈ 𝐻𝑎   ⇒ 𝑎 ∈ 𝐻.  

Hence, Ha = H ⇒ 𝑎 ∈ 𝐻. 

Conversely, suppose  𝑎 ∈ 𝐻. To prove Ha = H. 
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Let 𝑥 ∈ 𝐻𝑎 ⇒ 𝑥 = ℎ𝑎  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ ∈ 𝐻. 

Now,  ℎ, 𝑎 ∈ 𝐻 ⇒ ℎ𝑎 ∈ 𝐻 ⇒ 𝑥 ∈ 𝐻. 

This shows that 𝑥 ∈ 𝐻𝑎 ⇒ 𝑥 ∈ 𝐻  

 ⇒ 𝐻𝑎 ⊆ 𝐻.                                               …..……(eq. 1) 

Now, take 𝑥 ∈ 𝐻.  𝐺𝑖𝑣𝑒𝑛 𝑎 ∈ 𝐻 ⇒ 𝑥𝑎−1 ∈ 𝐻. 

⇒   (𝑥𝑎−1)𝑎 ∈ 𝐻𝑎  ⇒ 𝑥(𝑎−1𝑎) ∈ 𝐻𝑎   

 ⇒ 𝑥. 𝑒 ∈ 𝐻𝑎 ⇒ 𝑥 ∈ 𝐻𝑎 

This proves that if  𝑥 ∈ 𝐻 ⇒ 𝑥 ∈ 𝐻𝑎  ⇒ 𝐻 ⊆ 𝐻𝑎.   ……..(eq. 2) 

From eq. (1) & (2), we have    Ha = H. 

 

(ii) Proof is similar to (i). 
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(iii) Firstly, suppose Ha = Hb. 

Now 𝑒 ∈ 𝐻, as H is a subgroup of G ⇒ 𝑒𝑎 ∈ 𝐻𝑎,   𝑎 ∈ 𝐻𝑎  

             ⇒ 𝑎 ∈ 𝐻𝑏, since Ha = Hb 

⇒ 𝑎 = ℎ𝑏   𝑓𝑜𝑟    ℎ ∈ 𝐻  

⇒ 𝑎𝑏−1 = (ℎ𝑏)𝑏−1 = ℎ(𝑏𝑏−1) = ℎ 𝑒 = ℎ  

Thus, 𝑎𝑏−1 ∈ 𝐻.     

Conversely, suppose 𝑎𝑏−1 ∈ 𝐻.  

Therefore, 𝑎𝑏−1 = ℎ  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ ∈ 𝐻. 

 ⇒  (𝑎𝑏−1)𝑏 = ℎ𝑏  ⇒ 𝑎(𝑏−1𝑏) = ℎ 𝑏 ⇒ 𝑎 = ℎ𝑏. 

Thus, Ha = H (hb) = (Hh)b = Hb. 
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(iv) Proof is similar to (iii). 

3. Theorem: If H is a subgroup of G and  a, b  ∈ 𝐺, then  

(i)  𝑎 ∈ 𝐻b if and only if Ha = Hb 

(ii)  𝑎 ∈ 𝑏𝐻 if and only if aH = bH. 

Proof: (i) Suppose 𝑎 ∈ 𝐻b.  

Then 𝑎𝑏−1  ∈ (𝐻𝑏)𝑏−1   

         ⇒ 𝑎 𝑏−1 ∈ 𝐻(b𝑏−1)   

   ⇒   a𝑏−1 ∈ 𝐻𝑒 = 𝐻 

   ⇒ Ha𝑏−1  =   𝐻 

   ⇒ (𝐻𝑎𝑏−1)𝑏 = 𝐻𝑏 

   ⇒ 𝐻𝑎 (𝑏−1𝑏) = 𝐻𝑏 
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   ⇒ 𝐻𝑎𝑒 = 𝐻𝑏 ⇒ 𝐻𝑎 = 𝐻𝑏. 

Conversely, let Ha = Hb. Now 𝑒 ∈ H, as H is a subgroup of G. 

⇒ 𝑒𝑎 ∈ 𝐻𝑎  ⇒ 𝑎 ∈ 𝐻𝑎 ,  

𝐵𝑢𝑡 𝐻𝑎 = 𝐻𝑏 ⇒ 𝑎 ∈ 𝐻𝑏. 

 

(ii) Proof is similar to (i) 
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4. Theorem: Prove that any two right(left) cosets of a subgroup are 

either disjoint or  identical. 

Proof: Let H be a subgroup of a group G and 𝑎, 𝑏 ∈ 𝐺.  

Let Ha and Hb be two right cosets of H in G.  

We have to show that either   Ha = Hb    or         𝑯𝒂 ∩  𝑯𝒃 =  ∅. 

Case 1: If     𝐻𝑎 ∩  𝐻𝑏 =  ∅, then nothing to prove. 

Case 2: Let  𝐻𝑎 ∩  𝐻𝑏 ≠  ∅. We have to show that Ha = Hb. 

Since 𝐻𝑎 ∩  𝐻𝑏 ≠  ∅, so there exist atleast one element 

   𝑥 ∈  𝐻𝑎 ∩  𝐻𝑏 

   ⇒ 𝑥 ∈ 𝐻𝑎   &     𝑥  ∈ 𝐻𝑏 

⇒ 𝑥 = ℎ1𝑎 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ1 ∈ 𝐻    &    𝑥 =  ℎ2𝑏 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ2 ∈ 𝐻  
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Thus,  ℎ1𝑎 =  ℎ2𝑏  ⇒  ℎ1
−1(ℎ1𝑎) =  ℎ1

−1(ℎ2𝑏) 

⇒   (ℎ1
−1ℎ1)𝑎 =  (ℎ1

−1ℎ2)𝑏 

     ⇒ 𝑒𝑎 = ℎ3𝑏, 𝑤ℎ𝑒𝑟𝑒 ℎ3 =  (ℎ1
−1ℎ2)  ∈ 𝐻    

⇒ 𝑎 =  ℎ3𝑏   ⇒ 𝐻𝑎 = 𝐻(ℎ3𝑏)   = (𝐻ℎ3)𝑏 = 𝐻𝑏  

𝑠𝑖𝑛𝑐𝑒 𝐻ℎ3 = 𝐻.  

Hence, Ha = Hb.  

Thus, if 𝐻𝑎 ∩  𝐻𝑏 ≠  ∅,  then Ha = Hb.  

So, either   Ha = Hb or 𝐻𝑎 ∩  𝐻𝑏 =  ∅. 
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5.Theorem : The group G is equal to the union of all right cosets 

of H in G. 

Proof: Let e,a,b,c,……be elements of G and  H=He, Ha, Hb, Hc, 

…… are right cosets of H in G. We have to show that  

G = H ∪ Ha ∪ Hb ∪ Hc ∪ … … … 

Let 𝑥 ∈ 𝐺 and xH be a right coset of H in G.  

Now 𝑒𝑥 ∈ 𝐻𝑥, (since 𝑒 ∈ 𝐺 and H is a subgroup of G). 

Thus, 𝑥 ∈ 𝐻𝑥 ⇒ 𝑥 ∈ H ∪ Ha ∪ Hb ∪ Hc ∪ … .∪ Hx ∪ … … … 

Therefore,  

                     G ⊂ H ∪ Ha ∪ Hb ∪ Hc ∪ … … …(1) 

Conversely, suppose Ha is any right coset of H in G, where 𝑎 ∈ 𝐺. 
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Let 𝑥 ∈ 𝐻𝑎 ⇒ 𝑥 = ℎ𝑎 for some ℎ ∈ 𝐻. As 𝐻 ⊂ 𝐺 ⇒ ℎ ∈ 𝐺. 

Also 𝑎 ∈ 𝐺  ⇒ ℎ𝑎 ∈ 𝐺 ⇒ 𝑥 ∈ 𝐺.  

Therefore, 𝑥 ∈ 𝐻𝑎 ⇒ 𝑥 ∈ 𝐺. 

Hence, 

             𝐻𝑎 ⊂ 𝐺 ⇒  ⋃ 𝐻𝑎 ⊂ 𝐺.  𝑎∈𝐺  

        ⇒ H ∪ Ha ∪ Hb ∪ Hc ∪ … . ⊂ G          ……(2) 

From (1) & (2), we have  

G = H ∪ Ha ∪ Hb ∪ Hc ∪ … … … 
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6.Theorem: There is one-to-one correspondence between any two 

left cosets of H in G. 

Proof: Let aH and bH be two left cosets of H in G for 𝑎, 𝑏 ∈ 𝐻. 

Define a map f: aH → bH   by f(ah) = bh     ∀𝑎ℎ ∈ 𝑎𝐻. 

f is one-to-one map: Let 𝑥, 𝑦 ∈ 𝑎𝐻 such that f(x) = f(y). 

Since 𝑥, 𝑦 ∈ 𝑎𝐻 ⇒ 𝑥 = 𝑎ℎ1, 𝑦 = 𝑎ℎ2  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ1ℎ2 ∈ 𝐻. 

Thus, 𝑓(𝑥) = 𝑓(𝑦)  ⇒ 𝑓(𝑎ℎ1) = 𝑓(𝑎ℎ2) ⇒ 𝑏ℎ1 = 𝑏ℎ2 

⇒ 𝑏ℎ1 = 𝑏ℎ2  ⇒ ℎ1 =  ℎ2 by left cancellation laws. 

⇒ 𝑎ℎ1 =  𝑎ℎ2  ⇒ 𝑥 = 𝑦 ⇒ 𝑓 is one-to-one. 

f is onto map: Let  𝑦 ∈ 𝑏𝐻 ⇒ 𝑦 = 𝑏ℎ for some ℎ ∈ 𝐻.  

Suppose x = ah. Since ℎ ∈ 𝐻 ⇒ 𝑎ℎ ∈ 𝑎𝐻 ⇒ 𝑥 ∈ 𝑎𝐻  
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where 𝑥 = 𝑎ℎ  ∈ 𝑎𝐻. Thus, f is onto map. 

Therefore, f is one-to-one and onto map.  

Hence, aH and bH are in one-one correspondence. 

 

7.Theorem: There is one-to-one correspondence between any two 

right cosets of H in G. 

Proof: Same as in theorem 6 by using right cosets in place of left 

cosets. 

 

8.Theorem: There is one-to-one correspondence between the set 

of all left cosets of H in G and the set of right cosets of H in G. 
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Proof: Let L = {aH: a ∈ G} and 𝑀 = { 𝐻𝑎: 𝑎 ∈ 𝐺} 

Define a map f ∶ L → M   by 𝑓 (𝑎𝐻) = 𝐻𝑎−1 ∀𝑎 ∈ 𝐺.  

If 𝑎 ∈ 𝐺 then 𝑎−1 ∈ 𝐺 and hence 𝐻𝑎−1 ∈ 𝑀, so f is a map from L 

to M.  

f is well-defined: Let 𝑎, 𝑏 ∈ 𝐺 such that aH = bH 

⇔ 𝑎−1𝑏 ∈ 𝐻 ⇔ 𝐻𝑎−1𝑏 = 𝐻 ⇔ (𝐻𝑎−1𝑏)𝑏−1 = 𝐻𝑏−1 

⇔ 𝐻𝑎−1(𝑏𝑏−1) = 𝐻𝑏−1  ⇔ 𝐻𝑎−1𝑒 = 𝐻𝑏−1   

⇔ 𝐻𝑎−1 = 𝐻𝑏−1 ⇔ 𝑓(𝑎𝐻) = 𝑓(𝑏𝐻).   

Thus, f is well-defined. 

f is one-one map: The proof follows from reverse steps of f is 

well-defined. 
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f is onto map: Let  𝐻𝑎 ∈ 𝑀 be arbitrarily.  

As 𝑎 ∈ 𝐺 ⇒  𝑎−1 ∈ 𝐺 ⇒   𝑎−1𝐻 ∈ 𝐿  such that  

 𝑓(𝑎−1𝐻) = 𝐻(𝑎−1)−1 = 𝐻𝑎. Thus, f is onto map. 

Hence, f ∶ L → M is one-to-one  and onto map. 
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Definition: (Index of Subgroup) 

The number of distinct left or right cosets of a subgroup H in 

group G is called the index of H in G and is denoted by [G:H] 

 

Definition: (Order of an element) 

Let a be an element of a group G. If there exists a positive integer 

such that an = e, then a is said to have finite order and the smallest 

such positive n such that an = e is called the order of a and is 

denoted by O(a). 

If there does not exist a positive integer n such that an = e, then a is 

said to have infinite order or the order does not exist. 
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If (G, +) is an additive group and a is an element of G then n is 

called order of an element a if n is a smallest +ve integer such that 

𝑛𝑎 = 𝑎 + 𝑎 + 𝑎 + ⋯ (𝑛 − 𝑡𝑖𝑚𝑒𝑠) + 𝑎 = 0 

Example: In group (G, +6), the order of each element exists. 

Here G = {0, 1, 2, 3, 4, 5}.  

The order of 0, O(0)= 1, O(1) = 6,  

          O(2) = 3,O(3)  = 2, O(4)  = 3, O(5) = 6  
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Lagrange’s Theorem:  

Statement: The order of each subgroup of a finite group is a 

divisor of the order of the group. 

Proof: Let G be a group of finite order n. Let H be a subgroup of 

G and let O(H) = m. Suppose h1, h2, h3, h4, …….hm be m distinct 

elements of H. Suppose 𝑎 ∈ 𝐺, Ha is a right coset of H in G and 

we have  

𝐻𝑎 = { ℎ1𝑎, ℎ2𝑎, ℎ3𝑎, … . . ℎ𝑚𝑎} 

Ha has m distinct elements, (since if  

ℎ𝑖𝑎 =  ℎ𝑗𝑎, 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑖 ≠ 𝑗 

By using right cancellation laws, ℎ𝑖 =  ℎ𝑗, a contradiction.) 
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Hence, each right coset of H in G has m distinct members. Any 

two distinct right cosets of H in G are disjoint. Since G is a finite 

group, the number of distinct right cosets of H in G will be finite, 

say equal to k. The union of these k distinct right cosets of H in G 

is equal to G.  

Thus, if 𝐻𝑎1, 𝐻𝑎2, 𝐻𝑎3, … . . 𝐻𝑎𝑘 are distinct right cosets of H in 

G, then  

 𝐺 =  𝐻𝑎1 ∪  𝐻𝑎2 ∪  𝐻𝑎3 ∪ … . .∪ 𝐻𝑎𝑘 

Therefore, Number of elements in G  

=  the number of elements in 𝐻𝑎1 + number of elements in Ha2    

+ …….+ the number of elements in Hak 

(since two distinct right cosets are mutually disjoint) 
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This implies that  𝑂(𝐺) = 𝑘𝑚 ⇒ 𝑛 = 𝑘𝑚 ⇒ 𝑘 =
𝑛

𝑚
 

Thus, m is a divisor of n.  

This shows that O(H) is a divisor of o(G).  

Hence, the theorem. 

  

Converse of the Lagrange’s theorem is not true. 

e.g. The alternating group A4 of degree 4 is of order 12. But there 

is no subgroup of A4 of order 6, although 6 is a divisor of 12. 
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Definition (Normal Subgroups) 

A subgroup H of G is called a normal subgroup of G if every left 

coset of H in G is equal to the corresponding right coset of h in G. 

i.e., aH = Ha, for all 𝑎 ∈ 𝐺. 

Note that (i) If (G,+) is an additive group and H is called normal 

subgroup of G iff    a + H = H + a  for all 𝑎 ∈ 𝐺. 

(ii) If G is an Abelian group then every subgroup H of G is a 

normal subgroup. 

(iii) The subgroups {e} and G of any group G are always normal 

subgroups of G. These are called trivial normal subgroups. 
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Theorem: A subgroup H of G is a normal subgroup of G if and 

only if       𝑔ℎ𝑔−1 ∈ 𝐻  ∀ ℎ ∈ 𝐻, 𝑔 ∈ 𝐺. 

Proof: Firstly, suppose H is a normal subgroup of G.   

Therefore,  𝑔𝐻 = 𝐻𝑔  ∀ 𝑔 ∈ 𝐺. 

Let ℎ ∈ 𝐻, 𝑔 ∈ 𝐺. Then 𝑔ℎ ∈ 𝑔𝐻 = 𝐻𝑔 ⇒  𝑔𝐻 ∈ 𝐻𝑔. 

This implies that 𝑔ℎ =  ℎ1𝑔 for some ℎ1 ∈ 𝐻 

⇒ 𝑔ℎ𝑔−1 =  ℎ1 ∈ 𝐻  ⇒  𝑔ℎ𝑔−1 ∈ 𝐻. 

Conversely, suppose H is a subgroup of G such that 

 𝑔ℎ𝑔−1 ∈ 𝐻  ∀ ℎ ∈ 𝐻, 𝑔 ∈ 𝐺. 

We have to show that H is a normal subgroup, 

 i.e.,  𝑎 𝐻 =    𝐻𝑎 ∀ 𝑎 ∈ 𝐺.  
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Let 𝑎 ∈ 𝐺. Then by given condition  

𝑎ℎ𝑎−1 ∈ 𝐻    ∀ ℎ ∈ 𝐻. 

Suppose 𝑎ℎ ∈ 𝑎𝐻. Then 

 𝑎𝐻 = (𝑎𝐻𝑎−1)𝑎 ∈ 𝐻𝑎 ⇒ 𝑎ℎ ∈ 𝐻𝑎 ⇒ 𝑎𝐻 ⊂ 𝐻𝑎 … . (1)   

Again, let 𝑏 =  𝑎−1 ∈ 𝐺.  

Then by given condition 𝑏ℎ𝑏−1 ∈ 𝐻. 

But 𝑏ℎ𝑏−1 =  𝑎−1ℎ(𝑎−1)−1 =  𝑎−1ℎ𝑎 ∈ 𝐻. 

Let ℎ𝑎 ∈ 𝐻𝑎. Then 

ℎ𝑎 = (𝑎𝑎−1)ℎ𝑎 = 𝑎(𝑎−1ℎ𝑎) ∈ 𝑎 𝐻 

                                   ⇒ ℎ𝑎 ∈ 𝑎 𝐻 ⇒ 𝐻𝑎 ⊂ 𝑎 𝐻…….(2) 

From (1) and (2), we get  𝑎𝐻 = 𝐻𝑎     ∀ 𝑎 ∈ 𝐺  
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Hence, H is a normal subgroup of G. 

 

Theorem: Let H be subgroup of  a group G. Then the following 

are equivalent: 

(𝑖)  𝑔ℎ𝑔−1  ∈ 𝐻,   ∀ 𝑔 ∈ 𝐺, ℎ ∈ 𝐻. 

(𝑖𝑖) 𝑔𝐻𝑔−1 = 𝐻,   ∀ 𝑔 ∈ 𝐺. 

(𝑖𝑖𝑖) 𝑔𝐻 = 𝐻𝑔   ∀ 𝑔 ∈ 𝐺. 

Proof: (𝒊) ⇒ (𝒊𝒊) Given 𝑔ℎ𝑔−1  ∈ 𝐻,   ∀ 𝑔 ∈ 𝐺, ℎ ∈ 𝐻. 

 Let  𝑔ℎ𝑔−1 =  ℎ1    ∀ ℎ1 ∈ 𝐻, ⇒ 𝑔𝐻𝑔−1 = 𝐻    ∀ 𝑔 ∈ 𝐺. 

(𝒊𝒊) ⇒ (𝒊𝒊𝒊) Given 𝑔𝐻𝑔−1 = 𝐻,   ∀ 𝑔 ∈ 𝐺 

⇒ (𝑔𝐻𝑔−1)𝑔 = 𝐻𝑔,   ∀ 𝑔 ∈ 𝐺 



PROF ANUPAMA GUPTA 30 

 

⇒ 𝑔𝐻(𝑔−1𝑔) = 𝐻𝑔,   ∀ 𝑔 ∈ 𝐺 

⇒ 𝑔𝐻𝑒 = 𝐻𝑔,   ∀ 𝑔 ∈ 𝐺 

⇒ 𝑔𝐻 = 𝐻𝑔,   ∀ 𝑔 ∈ 𝐺 

(𝑖𝑖𝑖)  ⇒ (𝑖)      𝐺𝑖𝑣𝑒𝑛              𝑔𝐻 = 𝐻𝑔,   ∀ 𝑔 ∈ 𝐺 

⇒ 𝑔 ℎ =  ℎ1𝑔    ∀ ℎ, ℎ1  ∈ 𝐻 

⇒ 𝑔 ℎ𝑔−1 =  ℎ1  ∈ 𝐻 

                                       ⇒ 𝑔 ℎ𝑔−1  ∈ 𝐻.  

Hence, the theorem. 
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Ex: If H is a subgroup of G of index 2 in G then H is normal 

subgroup of G. 

Solu: Let H be a subgroup of G such that [G:H]= 2. Thus, the 

number of distinct cosets(left or right) of H in G is 2. 

We have to show that H is a normal subgroup of G. 

It is enough to show that 𝑎𝐻 = 𝐻𝑎 ∀ 𝑎 ∈ 𝐺. 

Case I: If 𝑎 ∈ 𝐻 ⇒     𝑎𝐻 = 𝐻 = 𝐻𝑎. Hence, H is a normal 

subgroup of G. 

Case II: If   𝑎 ∉  𝐻 ⇒ 𝑎𝐻 ≠ 𝐻 , 𝐻𝑎 ≠ 𝐻. 

Also, [G:H] = 2, 𝐻 ∪ 𝑎𝐻 = 𝐺 = 𝐻 ∪ 𝐻𝑎  

⇒ 𝑎𝐻 = 𝐻𝑎. 
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From Case(I) and Case (II), we have 𝑎𝐻 = 𝐻𝑎 ∀ 𝑎 ∈ 𝐺. 

Hence, H is a normal subgroup of G. 

 

Quotient Group 

Definition: Let H be normal subgroup of group G.  

Consider the set G/H, where  

     𝐺
𝐻 ⁄ = { 𝑎𝐻: 𝑎 ∈ 𝐺},  

the set G/H of all the left(right) cosets of H in G. Define an 

operation of composition as (aH)(bH) = abH. 

 Then G/H forms a group under the composition and group is 

known as Quotient Group.  



PROF ANUPAMA GUPTA 33 

 

Theorem: Let H be normal subgroup of G. Then the set G/H of all 

the left(right) cosets of H in G forms a group under the 

composition defined by (aH)(bH) = abH. 

Proof:  Let H be normal subgroup of group G.  

Then the set      𝐺 𝐻 ⁄ = { 𝑎𝐻: 𝑎 ∈ 𝐺} 

For 𝑎𝐻, 𝑏𝐻 ∈ 𝐺
𝐻⁄  Define the composition in      𝐺 𝐻 ⁄  as 

(aH)(bH) = abH 

To show that the above composition is well-defined. 

Let 𝑎 𝐻 = 𝑐𝐻   &  𝑏𝐻 = 𝑑𝐻   ∀𝑐, 𝑑 ∈ 𝐺 

Now 𝑎𝐻 = 𝑐𝐻 ⇒ 𝑐−1𝑎 ∈ 𝐻 ⇒ 𝑐−1𝑎 =  ℎ1   ∀ℎ1 ∈ 𝐻 

⇒ 𝑎 =  𝑐ℎ1   ∀ℎ1 ∈ 𝐻  
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Thus, 𝑎𝐻 = 𝑐𝐻 ⇒  𝑎 =  𝑐ℎ1   ∀ℎ1 ∈ 𝐻. 

Similarly, 𝑏𝐻 = 𝑑𝐻 ⇒  𝑏 =  𝑑ℎ2   ∀ℎ2 ∈ 𝐻. 

Hence, the composition is well-defined if  (aH)(bH) = (cH)(dH)  

if   abH = cdH   if  (𝑎𝑏)(𝑐𝑑)−1 ∈ 𝐻. 

To show 𝐺 𝐻⁄  is a group, let 𝑎𝐻, 𝑏𝐻, 𝑐𝐻 ∈ 𝐺
𝐻⁄  ∀𝑎, 𝑏, 𝑐 ∈ 𝐺. 

Closure Property: 𝑎𝐻 𝑏𝐻 = 𝑎𝑏𝐻 ∈  𝐺
𝐻⁄  𝑠𝑖𝑛𝑐𝑒 𝑎𝑏 ∈ 𝐺. 

Associativity:(𝑎𝐻. 𝑏𝐻)𝑐𝐻 = (𝑎𝑏𝐻)(𝑐𝐻) = (𝑎𝑏)𝑐𝐻 = 𝑎(𝑏𝑐)𝐻 

                                         (since 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐  ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 ) 

= 𝑎𝐻(𝑏𝑐𝐻) = 𝑎𝐻(𝑏𝐻. 𝑐𝐻). 

Existence of Identity: Let 𝑒 ∈ 𝐺, 𝑒𝐻 ∈  𝐺
𝐻⁄  
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(aH)(eH) = aeH = aH= eaH = eHaH.  

Thus, He =H is identity element of 𝐺 𝐻⁄  

Existence of Inverse: For 𝑎𝐻 ∈ 𝐺
𝐻⁄  we have 𝑎 ∈ 𝐺 ⇒ 𝑎−1 ∈ 𝐺 

⇒  𝑎−1𝐻 ∈ 𝐺
𝐻⁄  

(𝑎𝐻)(𝑎−1𝐻) = 𝑎𝑎−1𝐻 = 𝑒𝐻 = 𝐻 = 𝐻𝑒 = 𝑎−1𝑎𝐻  

     = (𝑎−1𝐻)(𝑎𝐻) 

Thus, a-1H is the inverse of  𝑎𝐻 ∈ 𝐺
𝐻⁄  

Hence, 𝐺 𝐻⁄  forms a group. 
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